Polynomials
TensorDec.hpol
— Functionhpol(W,A,X,d) ⤍ Homogeneous polynomial
This function gives the homogeneous polynomial associated to the symmetric decomposition W,A.
```
TensorDec.ahp
— Functionahp(T::symmetric Tensor, X=@polyvar x1...xn)-> 'P' Associated homogeneous polynomial
The associated homogeneous polynomials of degree d in n variables of a symmetric tensor of order d and dimension n.
Example
julia> n=2
2
julia> d=3
3
julia> T
2×2×2 Array{Float64,3}:
[:, :, 1] =
-3.0 -1.5
-1.5 0.0
[:, :, 2] =
-1.5 0.0
0.0 1.5
julia> X=@polyvar x1 x2
2-element Array{PolyVar{true},1}:
x1
x2
julia> P=ahp(T,X)
(-3.0 + 0.0im)x1³ + (-4.5 + 0.0im)x1²x2 + (1.5 + 0.0im)x2³
TensorDec.perp
— FunctionCompute the kernel of the Hankel matrix in degree d of the symmetric tensor F.
TensorDec.hilbert
— FunctionSequence of dimension of $S/(F^⟂)$ or of the kernels of the Hankel matrix in degree i for i in 1:maxdegree(F).