Moment Program
MomentPolynomialOpt.MOM.Model
MomentPolynomialOpt.MOM.add_constraint_moment
MomentPolynomialOpt.MOM.add_constraint_nneg
MomentPolynomialOpt.MOM.add_constraint_unitmass
MomentPolynomialOpt.MOM.add_constraint_zero
MomentPolynomialOpt.MOM.set_objective
MomentPolynomialOpt.MOM.set_objective_ncl
MomentPolynomialOpt.MOM.set_objective_tv
MomentPolynomialOpt.moments
MomentPolynomialOpt.moments
— Functionmoments(M, X, d::Int, symb::Symbol...)
Define variables for the moments of the monomials of degree less than d in the variables X. If
symb == :PSD
, non-negativity constraints are added;symb == :PRB
, unit mass and non-negativity constraints are added.
MomentPolynomialOpt.MOM.Model
— FunctionM = MOM.Model( `sense`, f, H, G, X, d)
Construct the Moment Program in the variables X of order d.
sense
== :inf or :supf
polynomial objective functionH =[h1, h2, ...]
array of polynomial equality constraints (can be empty)G =[g1, g2, ...]
array of non-negativity constraints (can be empty)X
is the vector of variablesd
is the order of the moment relaxation.
M = MOM.Model(C, X, d)
Construct the Moment Program where
- C is a vector of pairs (f, sense ) of objective or constraints where f is a polynomial and sense is "inf", "min", "sup", "max", ">=0", "<=0", "=0", or an interval
X
is the vector of variablesd
is the order of the moment relaxation.
Constraints
MomentPolynomialOpt.MOM.add_constraint_zero
— Functionadd_constraint_zero(M, eq, mu::Moments)
Add to the moment program M
, the constraints $eq\star \mu = 0$, that is all the constraints $\mu(p*m)==0$ for $degree(m) \le 2*degree(M)-degree(p)$.
MomentPolynomialOpt.MOM.add_constraint_nneg
— Functionadd_constraint_nneg(M, mu::Moments, g)
Add to the moment program M
, the constraints $g \star \mu \succeq 0$, that is the moment matrix of $g\star \mu$ is PSD.
MomentPolynomialOpt.MOM.add_constraint_moment
— Functionadd_constraint_moment(M, mu::Moments, p => v)
Add to the moment program M
, the constraint $\mu(p) - v == 0$.
MomentPolynomialOpt.MOM.add_constraint_unitmass
— Functionadd_constraint_unitmass(M, mu)
Add to the moment program M
, the constraint $\langle \mu, 1 \rangle - 1 = 0$.
Objective function
MomentPolynomialOpt.MOM.set_objective
— Functionset_objective(M, sense, p, mu)
Set the "inf" or "sup" objective function to $\sum_{i=1}^{\nu} \langle p\star \mu_i, 1 \rangle$ where p
is a polynomial.
MomentPolynomialOpt.MOM.set_objective_tv
— Functionset_objective_tv(M)
Set the objective function of the moment program to the total variation of the moment sequence $\mu$, that is the sum of the unit mass of the positive moment sequences $\sum_{i=1}^{\nu} \langle \mu_i, 1\rangle$.
MomentPolynomialOpt.MOM.set_objective_ncl
— Functionset_objective_ncl(M)
Set the objective function of moment program to the nuclear norm or equivalently the trace of the moment matrices.